Cascading Discriminant and Generative Models for Protein Secondary Structure Prediction
نویسندگان
چکیده
Most of the state-of-the-art methods for protein seconday structure prediction are complex combinations of discriminant models. They apply a local approach of the prediction which is known to induce a limit on the expected prediction accuracy. A priori, the use of generative models should make it possible to overcome this limitation. However, among the numerous hidden Markov models which have been dedicated to this task over more than two decades, none has come close to providing comparable performance. A major reason for this phenomenon is provided by the nature of the relevant information. Indeed, it is well known that irrespective of the model implemented, the prediction should benefit significantly from the availability of evolutionary information. Currently, this knowledge is embedded in position-specific scoring matrices which cannot be processed easily with hidden Markov models. With this observation at hand, the next significant advance should come from making the best of the two approaches, i.e., using a generative model on top of discriminant models. This article introduces the first hybrid architecture of this kind with state-of-the-art performance. The conjunction of the two levels of treatment makes it possible to optimize the recognition rate both at the residue level and at the segment level.
منابع مشابه
Protein Secondary Structure Prediction: a Literature Review with Focus on Machine Learning Approaches
DNA sequence, containing all genetic traits is not a functional entity. Instead, it transfers to protein sequences by transcription and translation processes. This protein sequence takes on a 3D structure later, which is a functional unit and can manage biological interactions using the information encoded in DNA. Every life process one can figure is undertaken by proteins with specific functio...
متن کاملPrediction of Secondary Structure of Citrus Viroids Reported from Southern Iran
Abstract Viroids are smallest, single-stranded, circular, highly structured plant pathogenic RNAs that do not code for any protein. Viroids belong to two families, the Avsunviroidae and the Pospiviroidae. Members of the Pospiviroidae family adopt a rod-like secondary structure. In this study the most stable secondary structures of citrus viroid variants that reported from Fars province wer...
متن کاملDeep Supervised and Convolutional Generative Stochastic Network for Protein Secondary Structure Prediction
Predicting protein secondary structure is a fundamental problem in protein structure prediction. Here we present a new supervised generative stochastic network (GSN) based method to predict local secondary structure with deep hierarchical representations. GSN is a recently proposed deep learning technique (Bengio & Thibodeau-Laufer, 2013) to globally train deep generative model. We present the ...
متن کاملPrediction of unwanted pregnancies using logistic regression, probit regression and discriminant analysis
Background: Unwanted pregnancy not intended by at least one of the parents has undesirable consequences for the family and the society. In the present study, three classification models were used and compared to predict unwanted pregnancies in an urban population. Methods : In this cross-sectional study, 887 pregnant mothers referring to health centers in Khorramabad, Iran, in 2012 were ...
متن کاملIn Silico Prediction and Docking of Tertiary Structure of Multifunctional Protein X of Hepatitis B Virus
Hepatitis B virus (HBV) infection is a universal health problem and may result into acute, fulminant, chronic hepatitis liver cirrhosis, or hepatocellular carcinoma. Sequence for protein X of HBV was retrieved from Uniprot database. ProtParam from ExPAsy server was used to investigate the physicochemical properties of the protein. Homology modeling was carried out using Phyre2 server, and refin...
متن کامل